You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1858 lines
56 KiB
1858 lines
56 KiB
/** |
|
* Javascript implementation of basic RSA algorithms. |
|
* |
|
* @author Dave Longley |
|
* |
|
* Copyright (c) 2010-2014 Digital Bazaar, Inc. |
|
* |
|
* The only algorithm currently supported for PKI is RSA. |
|
* |
|
* An RSA key is often stored in ASN.1 DER format. The SubjectPublicKeyInfo |
|
* ASN.1 structure is composed of an algorithm of type AlgorithmIdentifier |
|
* and a subjectPublicKey of type bit string. |
|
* |
|
* The AlgorithmIdentifier contains an Object Identifier (OID) and parameters |
|
* for the algorithm, if any. In the case of RSA, there aren't any. |
|
* |
|
* SubjectPublicKeyInfo ::= SEQUENCE { |
|
* algorithm AlgorithmIdentifier, |
|
* subjectPublicKey BIT STRING |
|
* } |
|
* |
|
* AlgorithmIdentifer ::= SEQUENCE { |
|
* algorithm OBJECT IDENTIFIER, |
|
* parameters ANY DEFINED BY algorithm OPTIONAL |
|
* } |
|
* |
|
* For an RSA public key, the subjectPublicKey is: |
|
* |
|
* RSAPublicKey ::= SEQUENCE { |
|
* modulus INTEGER, -- n |
|
* publicExponent INTEGER -- e |
|
* } |
|
* |
|
* PrivateKeyInfo ::= SEQUENCE { |
|
* version Version, |
|
* privateKeyAlgorithm PrivateKeyAlgorithmIdentifier, |
|
* privateKey PrivateKey, |
|
* attributes [0] IMPLICIT Attributes OPTIONAL |
|
* } |
|
* |
|
* Version ::= INTEGER |
|
* PrivateKeyAlgorithmIdentifier ::= AlgorithmIdentifier |
|
* PrivateKey ::= OCTET STRING |
|
* Attributes ::= SET OF Attribute |
|
* |
|
* An RSA private key as the following structure: |
|
* |
|
* RSAPrivateKey ::= SEQUENCE { |
|
* version Version, |
|
* modulus INTEGER, -- n |
|
* publicExponent INTEGER, -- e |
|
* privateExponent INTEGER, -- d |
|
* prime1 INTEGER, -- p |
|
* prime2 INTEGER, -- q |
|
* exponent1 INTEGER, -- d mod (p-1) |
|
* exponent2 INTEGER, -- d mod (q-1) |
|
* coefficient INTEGER -- (inverse of q) mod p |
|
* } |
|
* |
|
* Version ::= INTEGER |
|
* |
|
* The OID for the RSA key algorithm is: 1.2.840.113549.1.1.1 |
|
*/ |
|
var forge = require('./forge'); |
|
require('./asn1'); |
|
require('./jsbn'); |
|
require('./oids'); |
|
require('./pkcs1'); |
|
require('./prime'); |
|
require('./random'); |
|
require('./util'); |
|
|
|
if(typeof BigInteger === 'undefined') { |
|
var BigInteger = forge.jsbn.BigInteger; |
|
} |
|
|
|
var _crypto = forge.util.isNodejs ? require('crypto') : null; |
|
|
|
// shortcut for asn.1 API |
|
var asn1 = forge.asn1; |
|
|
|
// shortcut for util API |
|
var util = forge.util; |
|
|
|
/* |
|
* RSA encryption and decryption, see RFC 2313. |
|
*/ |
|
forge.pki = forge.pki || {}; |
|
module.exports = forge.pki.rsa = forge.rsa = forge.rsa || {}; |
|
var pki = forge.pki; |
|
|
|
// for finding primes, which are 30k+i for i = 1, 7, 11, 13, 17, 19, 23, 29 |
|
var GCD_30_DELTA = [6, 4, 2, 4, 2, 4, 6, 2]; |
|
|
|
// validator for a PrivateKeyInfo structure |
|
var privateKeyValidator = { |
|
// PrivateKeyInfo |
|
name: 'PrivateKeyInfo', |
|
tagClass: asn1.Class.UNIVERSAL, |
|
type: asn1.Type.SEQUENCE, |
|
constructed: true, |
|
value: [{ |
|
// Version (INTEGER) |
|
name: 'PrivateKeyInfo.version', |
|
tagClass: asn1.Class.UNIVERSAL, |
|
type: asn1.Type.INTEGER, |
|
constructed: false, |
|
capture: 'privateKeyVersion' |
|
}, { |
|
// privateKeyAlgorithm |
|
name: 'PrivateKeyInfo.privateKeyAlgorithm', |
|
tagClass: asn1.Class.UNIVERSAL, |
|
type: asn1.Type.SEQUENCE, |
|
constructed: true, |
|
value: [{ |
|
name: 'AlgorithmIdentifier.algorithm', |
|
tagClass: asn1.Class.UNIVERSAL, |
|
type: asn1.Type.OID, |
|
constructed: false, |
|
capture: 'privateKeyOid' |
|
}] |
|
}, { |
|
// PrivateKey |
|
name: 'PrivateKeyInfo', |
|
tagClass: asn1.Class.UNIVERSAL, |
|
type: asn1.Type.OCTETSTRING, |
|
constructed: false, |
|
capture: 'privateKey' |
|
}] |
|
}; |
|
|
|
// validator for an RSA private key |
|
var rsaPrivateKeyValidator = { |
|
// RSAPrivateKey |
|
name: 'RSAPrivateKey', |
|
tagClass: asn1.Class.UNIVERSAL, |
|
type: asn1.Type.SEQUENCE, |
|
constructed: true, |
|
value: [{ |
|
// Version (INTEGER) |
|
name: 'RSAPrivateKey.version', |
|
tagClass: asn1.Class.UNIVERSAL, |
|
type: asn1.Type.INTEGER, |
|
constructed: false, |
|
capture: 'privateKeyVersion' |
|
}, { |
|
// modulus (n) |
|
name: 'RSAPrivateKey.modulus', |
|
tagClass: asn1.Class.UNIVERSAL, |
|
type: asn1.Type.INTEGER, |
|
constructed: false, |
|
capture: 'privateKeyModulus' |
|
}, { |
|
// publicExponent (e) |
|
name: 'RSAPrivateKey.publicExponent', |
|
tagClass: asn1.Class.UNIVERSAL, |
|
type: asn1.Type.INTEGER, |
|
constructed: false, |
|
capture: 'privateKeyPublicExponent' |
|
}, { |
|
// privateExponent (d) |
|
name: 'RSAPrivateKey.privateExponent', |
|
tagClass: asn1.Class.UNIVERSAL, |
|
type: asn1.Type.INTEGER, |
|
constructed: false, |
|
capture: 'privateKeyPrivateExponent' |
|
}, { |
|
// prime1 (p) |
|
name: 'RSAPrivateKey.prime1', |
|
tagClass: asn1.Class.UNIVERSAL, |
|
type: asn1.Type.INTEGER, |
|
constructed: false, |
|
capture: 'privateKeyPrime1' |
|
}, { |
|
// prime2 (q) |
|
name: 'RSAPrivateKey.prime2', |
|
tagClass: asn1.Class.UNIVERSAL, |
|
type: asn1.Type.INTEGER, |
|
constructed: false, |
|
capture: 'privateKeyPrime2' |
|
}, { |
|
// exponent1 (d mod (p-1)) |
|
name: 'RSAPrivateKey.exponent1', |
|
tagClass: asn1.Class.UNIVERSAL, |
|
type: asn1.Type.INTEGER, |
|
constructed: false, |
|
capture: 'privateKeyExponent1' |
|
}, { |
|
// exponent2 (d mod (q-1)) |
|
name: 'RSAPrivateKey.exponent2', |
|
tagClass: asn1.Class.UNIVERSAL, |
|
type: asn1.Type.INTEGER, |
|
constructed: false, |
|
capture: 'privateKeyExponent2' |
|
}, { |
|
// coefficient ((inverse of q) mod p) |
|
name: 'RSAPrivateKey.coefficient', |
|
tagClass: asn1.Class.UNIVERSAL, |
|
type: asn1.Type.INTEGER, |
|
constructed: false, |
|
capture: 'privateKeyCoefficient' |
|
}] |
|
}; |
|
|
|
// validator for an RSA public key |
|
var rsaPublicKeyValidator = { |
|
// RSAPublicKey |
|
name: 'RSAPublicKey', |
|
tagClass: asn1.Class.UNIVERSAL, |
|
type: asn1.Type.SEQUENCE, |
|
constructed: true, |
|
value: [{ |
|
// modulus (n) |
|
name: 'RSAPublicKey.modulus', |
|
tagClass: asn1.Class.UNIVERSAL, |
|
type: asn1.Type.INTEGER, |
|
constructed: false, |
|
capture: 'publicKeyModulus' |
|
}, { |
|
// publicExponent (e) |
|
name: 'RSAPublicKey.exponent', |
|
tagClass: asn1.Class.UNIVERSAL, |
|
type: asn1.Type.INTEGER, |
|
constructed: false, |
|
capture: 'publicKeyExponent' |
|
}] |
|
}; |
|
|
|
// validator for an SubjectPublicKeyInfo structure |
|
// Note: Currently only works with an RSA public key |
|
var publicKeyValidator = forge.pki.rsa.publicKeyValidator = { |
|
name: 'SubjectPublicKeyInfo', |
|
tagClass: asn1.Class.UNIVERSAL, |
|
type: asn1.Type.SEQUENCE, |
|
constructed: true, |
|
captureAsn1: 'subjectPublicKeyInfo', |
|
value: [{ |
|
name: 'SubjectPublicKeyInfo.AlgorithmIdentifier', |
|
tagClass: asn1.Class.UNIVERSAL, |
|
type: asn1.Type.SEQUENCE, |
|
constructed: true, |
|
value: [{ |
|
name: 'AlgorithmIdentifier.algorithm', |
|
tagClass: asn1.Class.UNIVERSAL, |
|
type: asn1.Type.OID, |
|
constructed: false, |
|
capture: 'publicKeyOid' |
|
}] |
|
}, { |
|
// subjectPublicKey |
|
name: 'SubjectPublicKeyInfo.subjectPublicKey', |
|
tagClass: asn1.Class.UNIVERSAL, |
|
type: asn1.Type.BITSTRING, |
|
constructed: false, |
|
value: [{ |
|
// RSAPublicKey |
|
name: 'SubjectPublicKeyInfo.subjectPublicKey.RSAPublicKey', |
|
tagClass: asn1.Class.UNIVERSAL, |
|
type: asn1.Type.SEQUENCE, |
|
constructed: true, |
|
optional: true, |
|
captureAsn1: 'rsaPublicKey' |
|
}] |
|
}] |
|
}; |
|
|
|
/** |
|
* Wrap digest in DigestInfo object. |
|
* |
|
* This function implements EMSA-PKCS1-v1_5-ENCODE as per RFC 3447. |
|
* |
|
* DigestInfo ::= SEQUENCE { |
|
* digestAlgorithm DigestAlgorithmIdentifier, |
|
* digest Digest |
|
* } |
|
* |
|
* DigestAlgorithmIdentifier ::= AlgorithmIdentifier |
|
* Digest ::= OCTET STRING |
|
* |
|
* @param md the message digest object with the hash to sign. |
|
* |
|
* @return the encoded message (ready for RSA encrytion) |
|
*/ |
|
var emsaPkcs1v15encode = function(md) { |
|
// get the oid for the algorithm |
|
var oid; |
|
if(md.algorithm in pki.oids) { |
|
oid = pki.oids[md.algorithm]; |
|
} else { |
|
var error = new Error('Unknown message digest algorithm.'); |
|
error.algorithm = md.algorithm; |
|
throw error; |
|
} |
|
var oidBytes = asn1.oidToDer(oid).getBytes(); |
|
|
|
// create the digest info |
|
var digestInfo = asn1.create( |
|
asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, []); |
|
var digestAlgorithm = asn1.create( |
|
asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, []); |
|
digestAlgorithm.value.push(asn1.create( |
|
asn1.Class.UNIVERSAL, asn1.Type.OID, false, oidBytes)); |
|
digestAlgorithm.value.push(asn1.create( |
|
asn1.Class.UNIVERSAL, asn1.Type.NULL, false, '')); |
|
var digest = asn1.create( |
|
asn1.Class.UNIVERSAL, asn1.Type.OCTETSTRING, |
|
false, md.digest().getBytes()); |
|
digestInfo.value.push(digestAlgorithm); |
|
digestInfo.value.push(digest); |
|
|
|
// encode digest info |
|
return asn1.toDer(digestInfo).getBytes(); |
|
}; |
|
|
|
/** |
|
* Performs x^c mod n (RSA encryption or decryption operation). |
|
* |
|
* @param x the number to raise and mod. |
|
* @param key the key to use. |
|
* @param pub true if the key is public, false if private. |
|
* |
|
* @return the result of x^c mod n. |
|
*/ |
|
var _modPow = function(x, key, pub) { |
|
if(pub) { |
|
return x.modPow(key.e, key.n); |
|
} |
|
|
|
if(!key.p || !key.q) { |
|
// allow calculation without CRT params (slow) |
|
return x.modPow(key.d, key.n); |
|
} |
|
|
|
// pre-compute dP, dQ, and qInv if necessary |
|
if(!key.dP) { |
|
key.dP = key.d.mod(key.p.subtract(BigInteger.ONE)); |
|
} |
|
if(!key.dQ) { |
|
key.dQ = key.d.mod(key.q.subtract(BigInteger.ONE)); |
|
} |
|
if(!key.qInv) { |
|
key.qInv = key.q.modInverse(key.p); |
|
} |
|
|
|
/* Chinese remainder theorem (CRT) states: |
|
|
|
Suppose n1, n2, ..., nk are positive integers which are pairwise |
|
coprime (n1 and n2 have no common factors other than 1). For any |
|
integers x1, x2, ..., xk there exists an integer x solving the |
|
system of simultaneous congruences (where ~= means modularly |
|
congruent so a ~= b mod n means a mod n = b mod n): |
|
|
|
x ~= x1 mod n1 |
|
x ~= x2 mod n2 |
|
... |
|
x ~= xk mod nk |
|
|
|
This system of congruences has a single simultaneous solution x |
|
between 0 and n - 1. Furthermore, each xk solution and x itself |
|
is congruent modulo the product n = n1*n2*...*nk. |
|
So x1 mod n = x2 mod n = xk mod n = x mod n. |
|
|
|
The single simultaneous solution x can be solved with the following |
|
equation: |
|
|
|
x = sum(xi*ri*si) mod n where ri = n/ni and si = ri^-1 mod ni. |
|
|
|
Where x is less than n, xi = x mod ni. |
|
|
|
For RSA we are only concerned with k = 2. The modulus n = pq, where |
|
p and q are coprime. The RSA decryption algorithm is: |
|
|
|
y = x^d mod n |
|
|
|
Given the above: |
|
|
|
x1 = x^d mod p |
|
r1 = n/p = q |
|
s1 = q^-1 mod p |
|
x2 = x^d mod q |
|
r2 = n/q = p |
|
s2 = p^-1 mod q |
|
|
|
So y = (x1r1s1 + x2r2s2) mod n |
|
= ((x^d mod p)q(q^-1 mod p) + (x^d mod q)p(p^-1 mod q)) mod n |
|
|
|
According to Fermat's Little Theorem, if the modulus P is prime, |
|
for any integer A not evenly divisible by P, A^(P-1) ~= 1 mod P. |
|
Since A is not divisible by P it follows that if: |
|
N ~= M mod (P - 1), then A^N mod P = A^M mod P. Therefore: |
|
|
|
A^N mod P = A^(M mod (P - 1)) mod P. (The latter takes less effort |
|
to calculate). In order to calculate x^d mod p more quickly the |
|
exponent d mod (p - 1) is stored in the RSA private key (the same |
|
is done for x^d mod q). These values are referred to as dP and dQ |
|
respectively. Therefore we now have: |
|
|
|
y = ((x^dP mod p)q(q^-1 mod p) + (x^dQ mod q)p(p^-1 mod q)) mod n |
|
|
|
Since we'll be reducing x^dP by modulo p (same for q) we can also |
|
reduce x by p (and q respectively) before hand. Therefore, let |
|
|
|
xp = ((x mod p)^dP mod p), and |
|
xq = ((x mod q)^dQ mod q), yielding: |
|
|
|
y = (xp*q*(q^-1 mod p) + xq*p*(p^-1 mod q)) mod n |
|
|
|
This can be further reduced to a simple algorithm that only |
|
requires 1 inverse (the q inverse is used) to be used and stored. |
|
The algorithm is called Garner's algorithm. If qInv is the |
|
inverse of q, we simply calculate: |
|
|
|
y = (qInv*(xp - xq) mod p) * q + xq |
|
|
|
However, there are two further complications. First, we need to |
|
ensure that xp > xq to prevent signed BigIntegers from being used |
|
so we add p until this is true (since we will be mod'ing with |
|
p anyway). Then, there is a known timing attack on algorithms |
|
using the CRT. To mitigate this risk, "cryptographic blinding" |
|
should be used. This requires simply generating a random number r |
|
between 0 and n-1 and its inverse and multiplying x by r^e before |
|
calculating y and then multiplying y by r^-1 afterwards. Note that |
|
r must be coprime with n (gcd(r, n) === 1) in order to have an |
|
inverse. |
|
*/ |
|
|
|
// cryptographic blinding |
|
var r; |
|
do { |
|
r = new BigInteger( |
|
forge.util.bytesToHex(forge.random.getBytes(key.n.bitLength() / 8)), |
|
16); |
|
} while(r.compareTo(key.n) >= 0 || !r.gcd(key.n).equals(BigInteger.ONE)); |
|
x = x.multiply(r.modPow(key.e, key.n)).mod(key.n); |
|
|
|
// calculate xp and xq |
|
var xp = x.mod(key.p).modPow(key.dP, key.p); |
|
var xq = x.mod(key.q).modPow(key.dQ, key.q); |
|
|
|
// xp must be larger than xq to avoid signed bit usage |
|
while(xp.compareTo(xq) < 0) { |
|
xp = xp.add(key.p); |
|
} |
|
|
|
// do last step |
|
var y = xp.subtract(xq) |
|
.multiply(key.qInv).mod(key.p) |
|
.multiply(key.q).add(xq); |
|
|
|
// remove effect of random for cryptographic blinding |
|
y = y.multiply(r.modInverse(key.n)).mod(key.n); |
|
|
|
return y; |
|
}; |
|
|
|
/** |
|
* NOTE: THIS METHOD IS DEPRECATED, use 'sign' on a private key object or |
|
* 'encrypt' on a public key object instead. |
|
* |
|
* Performs RSA encryption. |
|
* |
|
* The parameter bt controls whether to put padding bytes before the |
|
* message passed in. Set bt to either true or false to disable padding |
|
* completely (in order to handle e.g. EMSA-PSS encoding seperately before), |
|
* signaling whether the encryption operation is a public key operation |
|
* (i.e. encrypting data) or not, i.e. private key operation (data signing). |
|
* |
|
* For PKCS#1 v1.5 padding pass in the block type to use, i.e. either 0x01 |
|
* (for signing) or 0x02 (for encryption). The key operation mode (private |
|
* or public) is derived from this flag in that case). |
|
* |
|
* @param m the message to encrypt as a byte string. |
|
* @param key the RSA key to use. |
|
* @param bt for PKCS#1 v1.5 padding, the block type to use |
|
* (0x01 for private key, 0x02 for public), |
|
* to disable padding: true = public key, false = private key. |
|
* |
|
* @return the encrypted bytes as a string. |
|
*/ |
|
pki.rsa.encrypt = function(m, key, bt) { |
|
var pub = bt; |
|
var eb; |
|
|
|
// get the length of the modulus in bytes |
|
var k = Math.ceil(key.n.bitLength() / 8); |
|
|
|
if(bt !== false && bt !== true) { |
|
// legacy, default to PKCS#1 v1.5 padding |
|
pub = (bt === 0x02); |
|
eb = _encodePkcs1_v1_5(m, key, bt); |
|
} else { |
|
eb = forge.util.createBuffer(); |
|
eb.putBytes(m); |
|
} |
|
|
|
// load encryption block as big integer 'x' |
|
// FIXME: hex conversion inefficient, get BigInteger w/byte strings |
|
var x = new BigInteger(eb.toHex(), 16); |
|
|
|
// do RSA encryption |
|
var y = _modPow(x, key, pub); |
|
|
|
// convert y into the encrypted data byte string, if y is shorter in |
|
// bytes than k, then prepend zero bytes to fill up ed |
|
// FIXME: hex conversion inefficient, get BigInteger w/byte strings |
|
var yhex = y.toString(16); |
|
var ed = forge.util.createBuffer(); |
|
var zeros = k - Math.ceil(yhex.length / 2); |
|
while(zeros > 0) { |
|
ed.putByte(0x00); |
|
--zeros; |
|
} |
|
ed.putBytes(forge.util.hexToBytes(yhex)); |
|
return ed.getBytes(); |
|
}; |
|
|
|
/** |
|
* NOTE: THIS METHOD IS DEPRECATED, use 'decrypt' on a private key object or |
|
* 'verify' on a public key object instead. |
|
* |
|
* Performs RSA decryption. |
|
* |
|
* The parameter ml controls whether to apply PKCS#1 v1.5 padding |
|
* or not. Set ml = false to disable padding removal completely |
|
* (in order to handle e.g. EMSA-PSS later on) and simply pass back |
|
* the RSA encryption block. |
|
* |
|
* @param ed the encrypted data to decrypt in as a byte string. |
|
* @param key the RSA key to use. |
|
* @param pub true for a public key operation, false for private. |
|
* @param ml the message length, if known, false to disable padding. |
|
* |
|
* @return the decrypted message as a byte string. |
|
*/ |
|
pki.rsa.decrypt = function(ed, key, pub, ml) { |
|
// get the length of the modulus in bytes |
|
var k = Math.ceil(key.n.bitLength() / 8); |
|
|
|
// error if the length of the encrypted data ED is not k |
|
if(ed.length !== k) { |
|
var error = new Error('Encrypted message length is invalid.'); |
|
error.length = ed.length; |
|
error.expected = k; |
|
throw error; |
|
} |
|
|
|
// convert encrypted data into a big integer |
|
// FIXME: hex conversion inefficient, get BigInteger w/byte strings |
|
var y = new BigInteger(forge.util.createBuffer(ed).toHex(), 16); |
|
|
|
// y must be less than the modulus or it wasn't the result of |
|
// a previous mod operation (encryption) using that modulus |
|
if(y.compareTo(key.n) >= 0) { |
|
throw new Error('Encrypted message is invalid.'); |
|
} |
|
|
|
// do RSA decryption |
|
var x = _modPow(y, key, pub); |
|
|
|
// create the encryption block, if x is shorter in bytes than k, then |
|
// prepend zero bytes to fill up eb |
|
// FIXME: hex conversion inefficient, get BigInteger w/byte strings |
|
var xhex = x.toString(16); |
|
var eb = forge.util.createBuffer(); |
|
var zeros = k - Math.ceil(xhex.length / 2); |
|
while(zeros > 0) { |
|
eb.putByte(0x00); |
|
--zeros; |
|
} |
|
eb.putBytes(forge.util.hexToBytes(xhex)); |
|
|
|
if(ml !== false) { |
|
// legacy, default to PKCS#1 v1.5 padding |
|
return _decodePkcs1_v1_5(eb.getBytes(), key, pub); |
|
} |
|
|
|
// return message |
|
return eb.getBytes(); |
|
}; |
|
|
|
/** |
|
* Creates an RSA key-pair generation state object. It is used to allow |
|
* key-generation to be performed in steps. It also allows for a UI to |
|
* display progress updates. |
|
* |
|
* @param bits the size for the private key in bits, defaults to 2048. |
|
* @param e the public exponent to use, defaults to 65537 (0x10001). |
|
* @param [options] the options to use. |
|
* prng a custom crypto-secure pseudo-random number generator to use, |
|
* that must define "getBytesSync". |
|
* algorithm the algorithm to use (default: 'PRIMEINC'). |
|
* |
|
* @return the state object to use to generate the key-pair. |
|
*/ |
|
pki.rsa.createKeyPairGenerationState = function(bits, e, options) { |
|
// TODO: migrate step-based prime generation code to forge.prime |
|
|
|
// set default bits |
|
if(typeof(bits) === 'string') { |
|
bits = parseInt(bits, 10); |
|
} |
|
bits = bits || 2048; |
|
|
|
// create prng with api that matches BigInteger secure random |
|
options = options || {}; |
|
var prng = options.prng || forge.random; |
|
var rng = { |
|
// x is an array to fill with bytes |
|
nextBytes: function(x) { |
|
var b = prng.getBytesSync(x.length); |
|
for(var i = 0; i < x.length; ++i) { |
|
x[i] = b.charCodeAt(i); |
|
} |
|
} |
|
}; |
|
|
|
var algorithm = options.algorithm || 'PRIMEINC'; |
|
|
|
// create PRIMEINC algorithm state |
|
var rval; |
|
if(algorithm === 'PRIMEINC') { |
|
rval = { |
|
algorithm: algorithm, |
|
state: 0, |
|
bits: bits, |
|
rng: rng, |
|
eInt: e || 65537, |
|
e: new BigInteger(null), |
|
p: null, |
|
q: null, |
|
qBits: bits >> 1, |
|
pBits: bits - (bits >> 1), |
|
pqState: 0, |
|
num: null, |
|
keys: null |
|
}; |
|
rval.e.fromInt(rval.eInt); |
|
} else { |
|
throw new Error('Invalid key generation algorithm: ' + algorithm); |
|
} |
|
|
|
return rval; |
|
}; |
|
|
|
/** |
|
* Attempts to runs the key-generation algorithm for at most n seconds |
|
* (approximately) using the given state. When key-generation has completed, |
|
* the keys will be stored in state.keys. |
|
* |
|
* To use this function to update a UI while generating a key or to prevent |
|
* causing browser lockups/warnings, set "n" to a value other than 0. A |
|
* simple pattern for generating a key and showing a progress indicator is: |
|
* |
|
* var state = pki.rsa.createKeyPairGenerationState(2048); |
|
* var step = function() { |
|
* // step key-generation, run algorithm for 100 ms, repeat |
|
* if(!forge.pki.rsa.stepKeyPairGenerationState(state, 100)) { |
|
* setTimeout(step, 1); |
|
* } else { |
|
* // key-generation complete |
|
* // TODO: turn off progress indicator here |
|
* // TODO: use the generated key-pair in "state.keys" |
|
* } |
|
* }; |
|
* // TODO: turn on progress indicator here |
|
* setTimeout(step, 0); |
|
* |
|
* @param state the state to use. |
|
* @param n the maximum number of milliseconds to run the algorithm for, 0 |
|
* to run the algorithm to completion. |
|
* |
|
* @return true if the key-generation completed, false if not. |
|
*/ |
|
pki.rsa.stepKeyPairGenerationState = function(state, n) { |
|
// set default algorithm if not set |
|
if(!('algorithm' in state)) { |
|
state.algorithm = 'PRIMEINC'; |
|
} |
|
|
|
// TODO: migrate step-based prime generation code to forge.prime |
|
// TODO: abstract as PRIMEINC algorithm |
|
|
|
// do key generation (based on Tom Wu's rsa.js, see jsbn.js license) |
|
// with some minor optimizations and designed to run in steps |
|
|
|
// local state vars |
|
var THIRTY = new BigInteger(null); |
|
THIRTY.fromInt(30); |
|
var deltaIdx = 0; |
|
var op_or = function(x, y) {return x | y;}; |
|
|
|
// keep stepping until time limit is reached or done |
|
var t1 = +new Date(); |
|
var t2; |
|
var total = 0; |
|
while(state.keys === null && (n <= 0 || total < n)) { |
|
// generate p or q |
|
if(state.state === 0) { |
|
/* Note: All primes are of the form: |
|
|
|
30k+i, for i < 30 and gcd(30, i)=1, where there are 8 values for i |
|
|
|
When we generate a random number, we always align it at 30k + 1. Each |
|
time the number is determined not to be prime we add to get to the |
|
next 'i', eg: if the number was at 30k + 1 we add 6. */ |
|
var bits = (state.p === null) ? state.pBits : state.qBits; |
|
var bits1 = bits - 1; |
|
|
|
// get a random number |
|
if(state.pqState === 0) { |
|
state.num = new BigInteger(bits, state.rng); |
|
// force MSB set |
|
if(!state.num.testBit(bits1)) { |
|
state.num.bitwiseTo( |
|
BigInteger.ONE.shiftLeft(bits1), op_or, state.num); |
|
} |
|
// align number on 30k+1 boundary |
|
state.num.dAddOffset(31 - state.num.mod(THIRTY).byteValue(), 0); |
|
deltaIdx = 0; |
|
|
|
++state.pqState; |
|
} else if(state.pqState === 1) { |
|
// try to make the number a prime |
|
if(state.num.bitLength() > bits) { |
|
// overflow, try again |
|
state.pqState = 0; |
|
// do primality test |
|
} else if(state.num.isProbablePrime( |
|
_getMillerRabinTests(state.num.bitLength()))) { |
|
++state.pqState; |
|
} else { |
|
// get next potential prime |
|
state.num.dAddOffset(GCD_30_DELTA[deltaIdx++ % 8], 0); |
|
} |
|
} else if(state.pqState === 2) { |
|
// ensure number is coprime with e |
|
state.pqState = |
|
(state.num.subtract(BigInteger.ONE).gcd(state.e) |
|
.compareTo(BigInteger.ONE) === 0) ? 3 : 0; |
|
} else if(state.pqState === 3) { |
|
// store p or q |
|
state.pqState = 0; |
|
if(state.p === null) { |
|
state.p = state.num; |
|
} else { |
|
state.q = state.num; |
|
} |
|
|
|
// advance state if both p and q are ready |
|
if(state.p !== null && state.q !== null) { |
|
++state.state; |
|
} |
|
state.num = null; |
|
} |
|
} else if(state.state === 1) { |
|
// ensure p is larger than q (swap them if not) |
|
if(state.p.compareTo(state.q) < 0) { |
|
state.num = state.p; |
|
state.p = state.q; |
|
state.q = state.num; |
|
} |
|
++state.state; |
|
} else if(state.state === 2) { |
|
// compute phi: (p - 1)(q - 1) (Euler's totient function) |
|
state.p1 = state.p.subtract(BigInteger.ONE); |
|
state.q1 = state.q.subtract(BigInteger.ONE); |
|
state.phi = state.p1.multiply(state.q1); |
|
++state.state; |
|
} else if(state.state === 3) { |
|
// ensure e and phi are coprime |
|
if(state.phi.gcd(state.e).compareTo(BigInteger.ONE) === 0) { |
|
// phi and e are coprime, advance |
|
++state.state; |
|
} else { |
|
// phi and e aren't coprime, so generate a new p and q |
|
state.p = null; |
|
state.q = null; |
|
state.state = 0; |
|
} |
|
} else if(state.state === 4) { |
|
// create n, ensure n is has the right number of bits |
|
state.n = state.p.multiply(state.q); |
|
|
|
// ensure n is right number of bits |
|
if(state.n.bitLength() === state.bits) { |
|
// success, advance |
|
++state.state; |
|
} else { |
|
// failed, get new q |
|
state.q = null; |
|
state.state = 0; |
|
} |
|
} else if(state.state === 5) { |
|
// set keys |
|
var d = state.e.modInverse(state.phi); |
|
state.keys = { |
|
privateKey: pki.rsa.setPrivateKey( |
|
state.n, state.e, d, state.p, state.q, |
|
d.mod(state.p1), d.mod(state.q1), |
|
state.q.modInverse(state.p)), |
|
publicKey: pki.rsa.setPublicKey(state.n, state.e) |
|
}; |
|
} |
|
|
|
// update timing |
|
t2 = +new Date(); |
|
total += t2 - t1; |
|
t1 = t2; |
|
} |
|
|
|
return state.keys !== null; |
|
}; |
|
|
|
/** |
|
* Generates an RSA public-private key pair in a single call. |
|
* |
|
* To generate a key-pair in steps (to allow for progress updates and to |
|
* prevent blocking or warnings in slow browsers) then use the key-pair |
|
* generation state functions. |
|
* |
|
* To generate a key-pair asynchronously (either through web-workers, if |
|
* available, or by breaking up the work on the main thread), pass a |
|
* callback function. |
|
* |
|
* @param [bits] the size for the private key in bits, defaults to 2048. |
|
* @param [e] the public exponent to use, defaults to 65537. |
|
* @param [options] options for key-pair generation, if given then 'bits' |
|
* and 'e' must *not* be given: |
|
* bits the size for the private key in bits, (default: 2048). |
|
* e the public exponent to use, (default: 65537 (0x10001)). |
|
* workerScript the worker script URL. |
|
* workers the number of web workers (if supported) to use, |
|
* (default: 2). |
|
* workLoad the size of the work load, ie: number of possible prime |
|
* numbers for each web worker to check per work assignment, |
|
* (default: 100). |
|
* prng a custom crypto-secure pseudo-random number generator to use, |
|
* that must define "getBytesSync". Disables use of native APIs. |
|
* algorithm the algorithm to use (default: 'PRIMEINC'). |
|
* @param [callback(err, keypair)] called once the operation completes. |
|
* |
|
* @return an object with privateKey and publicKey properties. |
|
*/ |
|
pki.rsa.generateKeyPair = function(bits, e, options, callback) { |
|
// (bits), (options), (callback) |
|
if(arguments.length === 1) { |
|
if(typeof bits === 'object') { |
|
options = bits; |
|
bits = undefined; |
|
} else if(typeof bits === 'function') { |
|
callback = bits; |
|
bits = undefined; |
|
} |
|
} else if(arguments.length === 2) { |
|
// (bits, e), (bits, options), (bits, callback), (options, callback) |
|
if(typeof bits === 'number') { |
|
if(typeof e === 'function') { |
|
callback = e; |
|
e = undefined; |
|
} else if(typeof e !== 'number') { |
|
options = e; |
|
e = undefined; |
|
} |
|
} else { |
|
options = bits; |
|
callback = e; |
|
bits = undefined; |
|
e = undefined; |
|
} |
|
} else if(arguments.length === 3) { |
|
// (bits, e, options), (bits, e, callback), (bits, options, callback) |
|
if(typeof e === 'number') { |
|
if(typeof options === 'function') { |
|
callback = options; |
|
options = undefined; |
|
} |
|
} else { |
|
callback = options; |
|
options = e; |
|
e = undefined; |
|
} |
|
} |
|
options = options || {}; |
|
if(bits === undefined) { |
|
bits = options.bits || 2048; |
|
} |
|
if(e === undefined) { |
|
e = options.e || 0x10001; |
|
} |
|
|
|
// use native code if permitted, available, and parameters are acceptable |
|
if(!forge.options.usePureJavaScript && !options.prng && |
|
bits >= 256 && bits <= 16384 && (e === 0x10001 || e === 3)) { |
|
if(callback) { |
|
// try native async |
|
if(_detectNodeCrypto('generateKeyPair')) { |
|
return _crypto.generateKeyPair('rsa', { |
|
modulusLength: bits, |
|
publicExponent: e, |
|
publicKeyEncoding: { |
|
type: 'spki', |
|
format: 'pem' |
|
}, |
|
privateKeyEncoding: { |
|
type: 'pkcs8', |
|
format: 'pem' |
|
} |
|
}, function(err, pub, priv) { |
|
if(err) { |
|
return callback(err); |
|
} |
|
callback(null, { |
|
privateKey: pki.privateKeyFromPem(priv), |
|
publicKey: pki.publicKeyFromPem(pub) |
|
}); |
|
}); |
|
} |
|
if(_detectSubtleCrypto('generateKey') && |
|
_detectSubtleCrypto('exportKey')) { |
|
// use standard native generateKey |
|
return util.globalScope.crypto.subtle.generateKey({ |
|
name: 'RSASSA-PKCS1-v1_5', |
|
modulusLength: bits, |
|
publicExponent: _intToUint8Array(e), |
|
hash: {name: 'SHA-256'} |
|
}, true /* key can be exported*/, ['sign', 'verify']) |
|
.then(function(pair) { |
|
return util.globalScope.crypto.subtle.exportKey( |
|
'pkcs8', pair.privateKey); |
|
// avoiding catch(function(err) {...}) to support IE <= 8 |
|
}).then(undefined, function(err) { |
|
callback(err); |
|
}).then(function(pkcs8) { |
|
if(pkcs8) { |
|
var privateKey = pki.privateKeyFromAsn1( |
|
asn1.fromDer(forge.util.createBuffer(pkcs8))); |
|
callback(null, { |
|
privateKey: privateKey, |
|
publicKey: pki.setRsaPublicKey(privateKey.n, privateKey.e) |
|
}); |
|
} |
|
}); |
|
} |
|
if(_detectSubtleMsCrypto('generateKey') && |
|
_detectSubtleMsCrypto('exportKey')) { |
|
var genOp = util.globalScope.msCrypto.subtle.generateKey({ |
|
name: 'RSASSA-PKCS1-v1_5', |
|
modulusLength: bits, |
|
publicExponent: _intToUint8Array(e), |
|
hash: {name: 'SHA-256'} |
|
}, true /* key can be exported*/, ['sign', 'verify']); |
|
genOp.oncomplete = function(e) { |
|
var pair = e.target.result; |
|
var exportOp = util.globalScope.msCrypto.subtle.exportKey( |
|
'pkcs8', pair.privateKey); |
|
exportOp.oncomplete = function(e) { |
|
var pkcs8 = e.target.result; |
|
var privateKey = pki.privateKeyFromAsn1( |
|
asn1.fromDer(forge.util.createBuffer(pkcs8))); |
|
callback(null, { |
|
privateKey: privateKey, |
|
publicKey: pki.setRsaPublicKey(privateKey.n, privateKey.e) |
|
}); |
|
}; |
|
exportOp.onerror = function(err) { |
|
callback(err); |
|
}; |
|
}; |
|
genOp.onerror = function(err) { |
|
callback(err); |
|
}; |
|
return; |
|
} |
|
} else { |
|
// try native sync |
|
if(_detectNodeCrypto('generateKeyPairSync')) { |
|
var keypair = _crypto.generateKeyPairSync('rsa', { |
|
modulusLength: bits, |
|
publicExponent: e, |
|
publicKeyEncoding: { |
|
type: 'spki', |
|
format: 'pem' |
|
}, |
|
privateKeyEncoding: { |
|
type: 'pkcs8', |
|
format: 'pem' |
|
} |
|
}); |
|
return { |
|
privateKey: pki.privateKeyFromPem(keypair.privateKey), |
|
publicKey: pki.publicKeyFromPem(keypair.publicKey) |
|
}; |
|
} |
|
} |
|
} |
|
|
|
// use JavaScript implementation |
|
var state = pki.rsa.createKeyPairGenerationState(bits, e, options); |
|
if(!callback) { |
|
pki.rsa.stepKeyPairGenerationState(state, 0); |
|
return state.keys; |
|
} |
|
_generateKeyPair(state, options, callback); |
|
}; |
|
|
|
/** |
|
* Sets an RSA public key from BigIntegers modulus and exponent. |
|
* |
|
* @param n the modulus. |
|
* @param e the exponent. |
|
* |
|
* @return the public key. |
|
*/ |
|
pki.setRsaPublicKey = pki.rsa.setPublicKey = function(n, e) { |
|
var key = { |
|
n: n, |
|
e: e |
|
}; |
|
|
|
/** |
|
* Encrypts the given data with this public key. Newer applications |
|
* should use the 'RSA-OAEP' decryption scheme, 'RSAES-PKCS1-V1_5' is for |
|
* legacy applications. |
|
* |
|
* @param data the byte string to encrypt. |
|
* @param scheme the encryption scheme to use: |
|
* 'RSAES-PKCS1-V1_5' (default), |
|
* 'RSA-OAEP', |
|
* 'RAW', 'NONE', or null to perform raw RSA encryption, |
|
* an object with an 'encode' property set to a function |
|
* with the signature 'function(data, key)' that returns |
|
* a binary-encoded string representing the encoded data. |
|
* @param schemeOptions any scheme-specific options. |
|
* |
|
* @return the encrypted byte string. |
|
*/ |
|
key.encrypt = function(data, scheme, schemeOptions) { |
|
if(typeof scheme === 'string') { |
|
scheme = scheme.toUpperCase(); |
|
} else if(scheme === undefined) { |
|
scheme = 'RSAES-PKCS1-V1_5'; |
|
} |
|
|
|
if(scheme === 'RSAES-PKCS1-V1_5') { |
|
scheme = { |
|
encode: function(m, key, pub) { |
|
return _encodePkcs1_v1_5(m, key, 0x02).getBytes(); |
|
} |
|
}; |
|
} else if(scheme === 'RSA-OAEP' || scheme === 'RSAES-OAEP') { |
|
scheme = { |
|
encode: function(m, key) { |
|
return forge.pkcs1.encode_rsa_oaep(key, m, schemeOptions); |
|
} |
|
}; |
|
} else if(['RAW', 'NONE', 'NULL', null].indexOf(scheme) !== -1) { |
|
scheme = {encode: function(e) {return e;}}; |
|
} else if(typeof scheme === 'string') { |
|
throw new Error('Unsupported encryption scheme: "' + scheme + '".'); |
|
} |
|
|
|
// do scheme-based encoding then rsa encryption |
|
var e = scheme.encode(data, key, true); |
|
return pki.rsa.encrypt(e, key, true); |
|
}; |
|
|
|
/** |
|
* Verifies the given signature against the given digest. |
|
* |
|
* PKCS#1 supports multiple (currently two) signature schemes: |
|
* RSASSA-PKCS1-V1_5 and RSASSA-PSS. |
|
* |
|
* By default this implementation uses the "old scheme", i.e. |
|
* RSASSA-PKCS1-V1_5, in which case once RSA-decrypted, the |
|
* signature is an OCTET STRING that holds a DigestInfo. |
|
* |
|
* DigestInfo ::= SEQUENCE { |
|
* digestAlgorithm DigestAlgorithmIdentifier, |
|
* digest Digest |
|
* } |
|
* DigestAlgorithmIdentifier ::= AlgorithmIdentifier |
|
* Digest ::= OCTET STRING |
|
* |
|
* To perform PSS signature verification, provide an instance |
|
* of Forge PSS object as the scheme parameter. |
|
* |
|
* @param digest the message digest hash to compare against the signature, |
|
* as a binary-encoded string. |
|
* @param signature the signature to verify, as a binary-encoded string. |
|
* @param scheme signature verification scheme to use: |
|
* 'RSASSA-PKCS1-V1_5' or undefined for RSASSA PKCS#1 v1.5, |
|
* a Forge PSS object for RSASSA-PSS, |
|
* 'NONE' or null for none, DigestInfo will not be expected, but |
|
* PKCS#1 v1.5 padding will still be used. |
|
* |
|
* @return true if the signature was verified, false if not. |
|
*/ |
|
key.verify = function(digest, signature, scheme) { |
|
if(typeof scheme === 'string') { |
|
scheme = scheme.toUpperCase(); |
|
} else if(scheme === undefined) { |
|
scheme = 'RSASSA-PKCS1-V1_5'; |
|
} |
|
|
|
if(scheme === 'RSASSA-PKCS1-V1_5') { |
|
scheme = { |
|
verify: function(digest, d) { |
|
// remove padding |
|
d = _decodePkcs1_v1_5(d, key, true); |
|
// d is ASN.1 BER-encoded DigestInfo |
|
var obj = asn1.fromDer(d); |
|
// compare the given digest to the decrypted one |
|
return digest === obj.value[1].value; |
|
} |
|
}; |
|
} else if(scheme === 'NONE' || scheme === 'NULL' || scheme === null) { |
|
scheme = { |
|
verify: function(digest, d) { |
|
// remove padding |
|
d = _decodePkcs1_v1_5(d, key, true); |
|
return digest === d; |
|
} |
|
}; |
|
} |
|
|
|
// do rsa decryption w/o any decoding, then verify -- which does decoding |
|
var d = pki.rsa.decrypt(signature, key, true, false); |
|
return scheme.verify(digest, d, key.n.bitLength()); |
|
}; |
|
|
|
return key; |
|
}; |
|
|
|
/** |
|
* Sets an RSA private key from BigIntegers modulus, exponent, primes, |
|
* prime exponents, and modular multiplicative inverse. |
|
* |
|
* @param n the modulus. |
|
* @param e the public exponent. |
|
* @param d the private exponent ((inverse of e) mod n). |
|
* @param p the first prime. |
|
* @param q the second prime. |
|
* @param dP exponent1 (d mod (p-1)). |
|
* @param dQ exponent2 (d mod (q-1)). |
|
* @param qInv ((inverse of q) mod p) |
|
* |
|
* @return the private key. |
|
*/ |
|
pki.setRsaPrivateKey = pki.rsa.setPrivateKey = function( |
|
n, e, d, p, q, dP, dQ, qInv) { |
|
var key = { |
|
n: n, |
|
e: e, |
|
d: d, |
|
p: p, |
|
q: q, |
|
dP: dP, |
|
dQ: dQ, |
|
qInv: qInv |
|
}; |
|
|
|
/** |
|
* Decrypts the given data with this private key. The decryption scheme |
|
* must match the one used to encrypt the data. |
|
* |
|
* @param data the byte string to decrypt. |
|
* @param scheme the decryption scheme to use: |
|
* 'RSAES-PKCS1-V1_5' (default), |
|
* 'RSA-OAEP', |
|
* 'RAW', 'NONE', or null to perform raw RSA decryption. |
|
* @param schemeOptions any scheme-specific options. |
|
* |
|
* @return the decrypted byte string. |
|
*/ |
|
key.decrypt = function(data, scheme, schemeOptions) { |
|
if(typeof scheme === 'string') { |
|
scheme = scheme.toUpperCase(); |
|
} else if(scheme === undefined) { |
|
scheme = 'RSAES-PKCS1-V1_5'; |
|
} |
|
|
|
// do rsa decryption w/o any decoding |
|
var d = pki.rsa.decrypt(data, key, false, false); |
|
|
|
if(scheme === 'RSAES-PKCS1-V1_5') { |
|
scheme = {decode: _decodePkcs1_v1_5}; |
|
} else if(scheme === 'RSA-OAEP' || scheme === 'RSAES-OAEP') { |
|
scheme = { |
|
decode: function(d, key) { |
|
return forge.pkcs1.decode_rsa_oaep(key, d, schemeOptions); |
|
} |
|
}; |
|
} else if(['RAW', 'NONE', 'NULL', null].indexOf(scheme) !== -1) { |
|
scheme = {decode: function(d) {return d;}}; |
|
} else { |
|
throw new Error('Unsupported encryption scheme: "' + scheme + '".'); |
|
} |
|
|
|
// decode according to scheme |
|
return scheme.decode(d, key, false); |
|
}; |
|
|
|
/** |
|
* Signs the given digest, producing a signature. |
|
* |
|
* PKCS#1 supports multiple (currently two) signature schemes: |
|
* RSASSA-PKCS1-V1_5 and RSASSA-PSS. |
|
* |
|
* By default this implementation uses the "old scheme", i.e. |
|
* RSASSA-PKCS1-V1_5. In order to generate a PSS signature, provide |
|
* an instance of Forge PSS object as the scheme parameter. |
|
* |
|
* @param md the message digest object with the hash to sign. |
|
* @param scheme the signature scheme to use: |
|
* 'RSASSA-PKCS1-V1_5' or undefined for RSASSA PKCS#1 v1.5, |
|
* a Forge PSS object for RSASSA-PSS, |
|
* 'NONE' or null for none, DigestInfo will not be used but |
|
* PKCS#1 v1.5 padding will still be used. |
|
* |
|
* @return the signature as a byte string. |
|
*/ |
|
key.sign = function(md, scheme) { |
|
/* Note: The internal implementation of RSA operations is being |
|
transitioned away from a PKCS#1 v1.5 hard-coded scheme. Some legacy |
|
code like the use of an encoding block identifier 'bt' will eventually |
|
be removed. */ |
|
|
|
// private key operation |
|
var bt = false; |
|
|
|
if(typeof scheme === 'string') { |
|
scheme = scheme.toUpperCase(); |
|
} |
|
|
|
if(scheme === undefined || scheme === 'RSASSA-PKCS1-V1_5') { |
|
scheme = {encode: emsaPkcs1v15encode}; |
|
bt = 0x01; |
|
} else if(scheme === 'NONE' || scheme === 'NULL' || scheme === null) { |
|
scheme = {encode: function() {return md;}}; |
|
bt = 0x01; |
|
} |
|
|
|
// encode and then encrypt |
|
var d = scheme.encode(md, key.n.bitLength()); |
|
return pki.rsa.encrypt(d, key, bt); |
|
}; |
|
|
|
return key; |
|
}; |
|
|
|
/** |
|
* Wraps an RSAPrivateKey ASN.1 object in an ASN.1 PrivateKeyInfo object. |
|
* |
|
* @param rsaKey the ASN.1 RSAPrivateKey. |
|
* |
|
* @return the ASN.1 PrivateKeyInfo. |
|
*/ |
|
pki.wrapRsaPrivateKey = function(rsaKey) { |
|
// PrivateKeyInfo |
|
return asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [ |
|
// version (0) |
|
asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false, |
|
asn1.integerToDer(0).getBytes()), |
|
// privateKeyAlgorithm |
|
asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [ |
|
asn1.create( |
|
asn1.Class.UNIVERSAL, asn1.Type.OID, false, |
|
asn1.oidToDer(pki.oids.rsaEncryption).getBytes()), |
|
asn1.create(asn1.Class.UNIVERSAL, asn1.Type.NULL, false, '') |
|
]), |
|
// PrivateKey |
|
asn1.create(asn1.Class.UNIVERSAL, asn1.Type.OCTETSTRING, false, |
|
asn1.toDer(rsaKey).getBytes()) |
|
]); |
|
}; |
|
|
|
/** |
|
* Converts a private key from an ASN.1 object. |
|
* |
|
* @param obj the ASN.1 representation of a PrivateKeyInfo containing an |
|
* RSAPrivateKey or an RSAPrivateKey. |
|
* |
|
* @return the private key. |
|
*/ |
|
pki.privateKeyFromAsn1 = function(obj) { |
|
// get PrivateKeyInfo |
|
var capture = {}; |
|
var errors = []; |
|
if(asn1.validate(obj, privateKeyValidator, capture, errors)) { |
|
obj = asn1.fromDer(forge.util.createBuffer(capture.privateKey)); |
|
} |
|
|
|
// get RSAPrivateKey |
|
capture = {}; |
|
errors = []; |
|
if(!asn1.validate(obj, rsaPrivateKeyValidator, capture, errors)) { |
|
var error = new Error('Cannot read private key. ' + |
|
'ASN.1 object does not contain an RSAPrivateKey.'); |
|
error.errors = errors; |
|
throw error; |
|
} |
|
|
|
// Note: Version is currently ignored. |
|
// capture.privateKeyVersion |
|
// FIXME: inefficient, get a BigInteger that uses byte strings |
|
var n, e, d, p, q, dP, dQ, qInv; |
|
n = forge.util.createBuffer(capture.privateKeyModulus).toHex(); |
|
e = forge.util.createBuffer(capture.privateKeyPublicExponent).toHex(); |
|
d = forge.util.createBuffer(capture.privateKeyPrivateExponent).toHex(); |
|
p = forge.util.createBuffer(capture.privateKeyPrime1).toHex(); |
|
q = forge.util.createBuffer(capture.privateKeyPrime2).toHex(); |
|
dP = forge.util.createBuffer(capture.privateKeyExponent1).toHex(); |
|
dQ = forge.util.createBuffer(capture.privateKeyExponent2).toHex(); |
|
qInv = forge.util.createBuffer(capture.privateKeyCoefficient).toHex(); |
|
|
|
// set private key |
|
return pki.setRsaPrivateKey( |
|
new BigInteger(n, 16), |
|
new BigInteger(e, 16), |
|
new BigInteger(d, 16), |
|
new BigInteger(p, 16), |
|
new BigInteger(q, 16), |
|
new BigInteger(dP, 16), |
|
new BigInteger(dQ, 16), |
|
new BigInteger(qInv, 16)); |
|
}; |
|
|
|
/** |
|
* Converts a private key to an ASN.1 RSAPrivateKey. |
|
* |
|
* @param key the private key. |
|
* |
|
* @return the ASN.1 representation of an RSAPrivateKey. |
|
*/ |
|
pki.privateKeyToAsn1 = pki.privateKeyToRSAPrivateKey = function(key) { |
|
// RSAPrivateKey |
|
return asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [ |
|
// version (0 = only 2 primes, 1 multiple primes) |
|
asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false, |
|
asn1.integerToDer(0).getBytes()), |
|
// modulus (n) |
|
asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false, |
|
_bnToBytes(key.n)), |
|
// publicExponent (e) |
|
asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false, |
|
_bnToBytes(key.e)), |
|
// privateExponent (d) |
|
asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false, |
|
_bnToBytes(key.d)), |
|
// privateKeyPrime1 (p) |
|
asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false, |
|
_bnToBytes(key.p)), |
|
// privateKeyPrime2 (q) |
|
asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false, |
|
_bnToBytes(key.q)), |
|
// privateKeyExponent1 (dP) |
|
asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false, |
|
_bnToBytes(key.dP)), |
|
// privateKeyExponent2 (dQ) |
|
asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false, |
|
_bnToBytes(key.dQ)), |
|
// coefficient (qInv) |
|
asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false, |
|
_bnToBytes(key.qInv)) |
|
]); |
|
}; |
|
|
|
/** |
|
* Converts a public key from an ASN.1 SubjectPublicKeyInfo or RSAPublicKey. |
|
* |
|
* @param obj the asn1 representation of a SubjectPublicKeyInfo or RSAPublicKey. |
|
* |
|
* @return the public key. |
|
*/ |
|
pki.publicKeyFromAsn1 = function(obj) { |
|
// get SubjectPublicKeyInfo |
|
var capture = {}; |
|
var errors = []; |
|
if(asn1.validate(obj, publicKeyValidator, capture, errors)) { |
|
// get oid |
|
var oid = asn1.derToOid(capture.publicKeyOid); |
|
if(oid !== pki.oids.rsaEncryption) { |
|
var error = new Error('Cannot read public key. Unknown OID.'); |
|
error.oid = oid; |
|
throw error; |
|
} |
|
obj = capture.rsaPublicKey; |
|
} |
|
|
|
// get RSA params |
|
errors = []; |
|
if(!asn1.validate(obj, rsaPublicKeyValidator, capture, errors)) { |
|
var error = new Error('Cannot read public key. ' + |
|
'ASN.1 object does not contain an RSAPublicKey.'); |
|
error.errors = errors; |
|
throw error; |
|
} |
|
|
|
// FIXME: inefficient, get a BigInteger that uses byte strings |
|
var n = forge.util.createBuffer(capture.publicKeyModulus).toHex(); |
|
var e = forge.util.createBuffer(capture.publicKeyExponent).toHex(); |
|
|
|
// set public key |
|
return pki.setRsaPublicKey( |
|
new BigInteger(n, 16), |
|
new BigInteger(e, 16)); |
|
}; |
|
|
|
/** |
|
* Converts a public key to an ASN.1 SubjectPublicKeyInfo. |
|
* |
|
* @param key the public key. |
|
* |
|
* @return the asn1 representation of a SubjectPublicKeyInfo. |
|
*/ |
|
pki.publicKeyToAsn1 = pki.publicKeyToSubjectPublicKeyInfo = function(key) { |
|
// SubjectPublicKeyInfo |
|
return asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [ |
|
// AlgorithmIdentifier |
|
asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [ |
|
// algorithm |
|
asn1.create(asn1.Class.UNIVERSAL, asn1.Type.OID, false, |
|
asn1.oidToDer(pki.oids.rsaEncryption).getBytes()), |
|
// parameters (null) |
|
asn1.create(asn1.Class.UNIVERSAL, asn1.Type.NULL, false, '') |
|
]), |
|
// subjectPublicKey |
|
asn1.create(asn1.Class.UNIVERSAL, asn1.Type.BITSTRING, false, [ |
|
pki.publicKeyToRSAPublicKey(key) |
|
]) |
|
]); |
|
}; |
|
|
|
/** |
|
* Converts a public key to an ASN.1 RSAPublicKey. |
|
* |
|
* @param key the public key. |
|
* |
|
* @return the asn1 representation of a RSAPublicKey. |
|
*/ |
|
pki.publicKeyToRSAPublicKey = function(key) { |
|
// RSAPublicKey |
|
return asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [ |
|
// modulus (n) |
|
asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false, |
|
_bnToBytes(key.n)), |
|
// publicExponent (e) |
|
asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false, |
|
_bnToBytes(key.e)) |
|
]); |
|
}; |
|
|
|
/** |
|
* Encodes a message using PKCS#1 v1.5 padding. |
|
* |
|
* @param m the message to encode. |
|
* @param key the RSA key to use. |
|
* @param bt the block type to use, i.e. either 0x01 (for signing) or 0x02 |
|
* (for encryption). |
|
* |
|
* @return the padded byte buffer. |
|
*/ |
|
function _encodePkcs1_v1_5(m, key, bt) { |
|
var eb = forge.util.createBuffer(); |
|
|
|
// get the length of the modulus in bytes |
|
var k = Math.ceil(key.n.bitLength() / 8); |
|
|
|
/* use PKCS#1 v1.5 padding */ |
|
if(m.length > (k - 11)) { |
|
var error = new Error('Message is too long for PKCS#1 v1.5 padding.'); |
|
error.length = m.length; |
|
error.max = k - 11; |
|
throw error; |
|
} |
|
|
|
/* A block type BT, a padding string PS, and the data D shall be |
|
formatted into an octet string EB, the encryption block: |
|
|
|
EB = 00 || BT || PS || 00 || D |
|
|
|
The block type BT shall be a single octet indicating the structure of |
|
the encryption block. For this version of the document it shall have |
|
value 00, 01, or 02. For a private-key operation, the block type |
|
shall be 00 or 01. For a public-key operation, it shall be 02. |
|
|
|
The padding string PS shall consist of k-3-||D|| octets. For block |
|
type 00, the octets shall have value 00; for block type 01, they |
|
shall have value FF; and for block type 02, they shall be |
|
pseudorandomly generated and nonzero. This makes the length of the |
|
encryption block EB equal to k. */ |
|
|
|
// build the encryption block |
|
eb.putByte(0x00); |
|
eb.putByte(bt); |
|
|
|
// create the padding |
|
var padNum = k - 3 - m.length; |
|
var padByte; |
|
// private key op |
|
if(bt === 0x00 || bt === 0x01) { |
|
padByte = (bt === 0x00) ? 0x00 : 0xFF; |
|
for(var i = 0; i < padNum; ++i) { |
|
eb.putByte(padByte); |
|
} |
|
} else { |
|
// public key op |
|
// pad with random non-zero values |
|
while(padNum > 0) { |
|
var numZeros = 0; |
|
var padBytes = forge.random.getBytes(padNum); |
|
for(var i = 0; i < padNum; ++i) { |
|
padByte = padBytes.charCodeAt(i); |
|
if(padByte === 0) { |
|
++numZeros; |
|
} else { |
|
eb.putByte(padByte); |
|
} |
|
} |
|
padNum = numZeros; |
|
} |
|
} |
|
|
|
// zero followed by message |
|
eb.putByte(0x00); |
|
eb.putBytes(m); |
|
|
|
return eb; |
|
} |
|
|
|
/** |
|
* Decodes a message using PKCS#1 v1.5 padding. |
|
* |
|
* @param em the message to decode. |
|
* @param key the RSA key to use. |
|
* @param pub true if the key is a public key, false if it is private. |
|
* @param ml the message length, if specified. |
|
* |
|
* @return the decoded bytes. |
|
*/ |
|
function _decodePkcs1_v1_5(em, key, pub, ml) { |
|
// get the length of the modulus in bytes |
|
var k = Math.ceil(key.n.bitLength() / 8); |
|
|
|
/* It is an error if any of the following conditions occurs: |
|
|
|
1. The encryption block EB cannot be parsed unambiguously. |
|
2. The padding string PS consists of fewer than eight octets |
|
or is inconsisent with the block type BT. |
|
3. The decryption process is a public-key operation and the block |
|
type BT is not 00 or 01, or the decryption process is a |
|
private-key operation and the block type is not 02. |
|
*/ |
|
|
|
// parse the encryption block |
|
var eb = forge.util.createBuffer(em); |
|
var first = eb.getByte(); |
|
var bt = eb.getByte(); |
|
if(first !== 0x00 || |
|
(pub && bt !== 0x00 && bt !== 0x01) || |
|
(!pub && bt != 0x02) || |
|
(pub && bt === 0x00 && typeof(ml) === 'undefined')) { |
|
throw new Error('Encryption block is invalid.'); |
|
} |
|
|
|
var padNum = 0; |
|
if(bt === 0x00) { |
|
// check all padding bytes for 0x00 |
|
padNum = k - 3 - ml; |
|
for(var i = 0; i < padNum; ++i) { |
|
if(eb.getByte() !== 0x00) { |
|
throw new Error('Encryption block is invalid.'); |
|
} |
|
} |
|
} else if(bt === 0x01) { |
|
// find the first byte that isn't 0xFF, should be after all padding |
|
padNum = 0; |
|
while(eb.length() > 1) { |
|
if(eb.getByte() !== 0xFF) { |
|
--eb.read; |
|
break; |
|
} |
|
++padNum; |
|
} |
|
} else if(bt === 0x02) { |
|
// look for 0x00 byte |
|
padNum = 0; |
|
while(eb.length() > 1) { |
|
if(eb.getByte() === 0x00) { |
|
--eb.read; |
|
break; |
|
} |
|
++padNum; |
|
} |
|
} |
|
|
|
// zero must be 0x00 and padNum must be (k - 3 - message length) |
|
var zero = eb.getByte(); |
|
if(zero !== 0x00 || padNum !== (k - 3 - eb.length())) { |
|
throw new Error('Encryption block is invalid.'); |
|
} |
|
|
|
return eb.getBytes(); |
|
} |
|
|
|
/** |
|
* Runs the key-generation algorithm asynchronously, either in the background |
|
* via Web Workers, or using the main thread and setImmediate. |
|
* |
|
* @param state the key-pair generation state. |
|
* @param [options] options for key-pair generation: |
|
* workerScript the worker script URL. |
|
* workers the number of web workers (if supported) to use, |
|
* (default: 2, -1 to use estimated cores minus one). |
|
* workLoad the size of the work load, ie: number of possible prime |
|
* numbers for each web worker to check per work assignment, |
|
* (default: 100). |
|
* @param callback(err, keypair) called once the operation completes. |
|
*/ |
|
function _generateKeyPair(state, options, callback) { |
|
if(typeof options === 'function') { |
|
callback = options; |
|
options = {}; |
|
} |
|
options = options || {}; |
|
|
|
var opts = { |
|
algorithm: { |
|
name: options.algorithm || 'PRIMEINC', |
|
options: { |
|
workers: options.workers || 2, |
|
workLoad: options.workLoad || 100, |
|
workerScript: options.workerScript |
|
} |
|
} |
|
}; |
|
if('prng' in options) { |
|
opts.prng = options.prng; |
|
} |
|
|
|
generate(); |
|
|
|
function generate() { |
|
// find p and then q (done in series to simplify) |
|
getPrime(state.pBits, function(err, num) { |
|
if(err) { |
|
return callback(err); |
|
} |
|
state.p = num; |
|
if(state.q !== null) { |
|
return finish(err, state.q); |
|
} |
|
getPrime(state.qBits, finish); |
|
}); |
|
} |
|
|
|
function getPrime(bits, callback) { |
|
forge.prime.generateProbablePrime(bits, opts, callback); |
|
} |
|
|
|
function finish(err, num) { |
|
if(err) { |
|
return callback(err); |
|
} |
|
|
|
// set q |
|
state.q = num; |
|
|
|
// ensure p is larger than q (swap them if not) |
|
if(state.p.compareTo(state.q) < 0) { |
|
var tmp = state.p; |
|
state.p = state.q; |
|
state.q = tmp; |
|
} |
|
|
|
// ensure p is coprime with e |
|
if(state.p.subtract(BigInteger.ONE).gcd(state.e) |
|
.compareTo(BigInteger.ONE) !== 0) { |
|
state.p = null; |
|
generate(); |
|
return; |
|
} |
|
|
|
// ensure q is coprime with e |
|
if(state.q.subtract(BigInteger.ONE).gcd(state.e) |
|
.compareTo(BigInteger.ONE) !== 0) { |
|
state.q = null; |
|
getPrime(state.qBits, finish); |
|
return; |
|
} |
|
|
|
// compute phi: (p - 1)(q - 1) (Euler's totient function) |
|
state.p1 = state.p.subtract(BigInteger.ONE); |
|
state.q1 = state.q.subtract(BigInteger.ONE); |
|
state.phi = state.p1.multiply(state.q1); |
|
|
|
// ensure e and phi are coprime |
|
if(state.phi.gcd(state.e).compareTo(BigInteger.ONE) !== 0) { |
|
// phi and e aren't coprime, so generate a new p and q |
|
state.p = state.q = null; |
|
generate(); |
|
return; |
|
} |
|
|
|
// create n, ensure n is has the right number of bits |
|
state.n = state.p.multiply(state.q); |
|
if(state.n.bitLength() !== state.bits) { |
|
// failed, get new q |
|
state.q = null; |
|
getPrime(state.qBits, finish); |
|
return; |
|
} |
|
|
|
// set keys |
|
var d = state.e.modInverse(state.phi); |
|
state.keys = { |
|
privateKey: pki.rsa.setPrivateKey( |
|
state.n, state.e, d, state.p, state.q, |
|
d.mod(state.p1), d.mod(state.q1), |
|
state.q.modInverse(state.p)), |
|
publicKey: pki.rsa.setPublicKey(state.n, state.e) |
|
}; |
|
|
|
callback(null, state.keys); |
|
} |
|
} |
|
|
|
/** |
|
* Converts a positive BigInteger into 2's-complement big-endian bytes. |
|
* |
|
* @param b the big integer to convert. |
|
* |
|
* @return the bytes. |
|
*/ |
|
function _bnToBytes(b) { |
|
// prepend 0x00 if first byte >= 0x80 |
|
var hex = b.toString(16); |
|
if(hex[0] >= '8') { |
|
hex = '00' + hex; |
|
} |
|
var bytes = forge.util.hexToBytes(hex); |
|
|
|
// ensure integer is minimally-encoded |
|
if(bytes.length > 1 && |
|
// leading 0x00 for positive integer |
|
((bytes.charCodeAt(0) === 0 && |
|
(bytes.charCodeAt(1) & 0x80) === 0) || |
|
// leading 0xFF for negative integer |
|
(bytes.charCodeAt(0) === 0xFF && |
|
(bytes.charCodeAt(1) & 0x80) === 0x80))) { |
|
return bytes.substr(1); |
|
} |
|
return bytes; |
|
} |
|
|
|
/** |
|
* Returns the required number of Miller-Rabin tests to generate a |
|
* prime with an error probability of (1/2)^80. |
|
* |
|
* See Handbook of Applied Cryptography Chapter 4, Table 4.4. |
|
* |
|
* @param bits the bit size. |
|
* |
|
* @return the required number of iterations. |
|
*/ |
|
function _getMillerRabinTests(bits) { |
|
if(bits <= 100) return 27; |
|
if(bits <= 150) return 18; |
|
if(bits <= 200) return 15; |
|
if(bits <= 250) return 12; |
|
if(bits <= 300) return 9; |
|
if(bits <= 350) return 8; |
|
if(bits <= 400) return 7; |
|
if(bits <= 500) return 6; |
|
if(bits <= 600) return 5; |
|
if(bits <= 800) return 4; |
|
if(bits <= 1250) return 3; |
|
return 2; |
|
} |
|
|
|
/** |
|
* Performs feature detection on the Node crypto interface. |
|
* |
|
* @param fn the feature (function) to detect. |
|
* |
|
* @return true if detected, false if not. |
|
*/ |
|
function _detectNodeCrypto(fn) { |
|
return forge.util.isNodejs && typeof _crypto[fn] === 'function'; |
|
} |
|
|
|
/** |
|
* Performs feature detection on the SubtleCrypto interface. |
|
* |
|
* @param fn the feature (function) to detect. |
|
* |
|
* @return true if detected, false if not. |
|
*/ |
|
function _detectSubtleCrypto(fn) { |
|
return (typeof util.globalScope !== 'undefined' && |
|
typeof util.globalScope.crypto === 'object' && |
|
typeof util.globalScope.crypto.subtle === 'object' && |
|
typeof util.globalScope.crypto.subtle[fn] === 'function'); |
|
} |
|
|
|
/** |
|
* Performs feature detection on the deprecated Microsoft Internet Explorer |
|
* outdated SubtleCrypto interface. This function should only be used after |
|
* checking for the modern, standard SubtleCrypto interface. |
|
* |
|
* @param fn the feature (function) to detect. |
|
* |
|
* @return true if detected, false if not. |
|
*/ |
|
function _detectSubtleMsCrypto(fn) { |
|
return (typeof util.globalScope !== 'undefined' && |
|
typeof util.globalScope.msCrypto === 'object' && |
|
typeof util.globalScope.msCrypto.subtle === 'object' && |
|
typeof util.globalScope.msCrypto.subtle[fn] === 'function'); |
|
} |
|
|
|
function _intToUint8Array(x) { |
|
var bytes = forge.util.hexToBytes(x.toString(16)); |
|
var buffer = new Uint8Array(bytes.length); |
|
for(var i = 0; i < bytes.length; ++i) { |
|
buffer[i] = bytes.charCodeAt(i); |
|
} |
|
return buffer; |
|
} |
|
|
|
function _privateKeyFromJwk(jwk) { |
|
if(jwk.kty !== 'RSA') { |
|
throw new Error( |
|
'Unsupported key algorithm "' + jwk.kty + '"; algorithm must be "RSA".'); |
|
} |
|
return pki.setRsaPrivateKey( |
|
_base64ToBigInt(jwk.n), |
|
_base64ToBigInt(jwk.e), |
|
_base64ToBigInt(jwk.d), |
|
_base64ToBigInt(jwk.p), |
|
_base64ToBigInt(jwk.q), |
|
_base64ToBigInt(jwk.dp), |
|
_base64ToBigInt(jwk.dq), |
|
_base64ToBigInt(jwk.qi)); |
|
} |
|
|
|
function _publicKeyFromJwk(jwk) { |
|
if(jwk.kty !== 'RSA') { |
|
throw new Error('Key algorithm must be "RSA".'); |
|
} |
|
return pki.setRsaPublicKey( |
|
_base64ToBigInt(jwk.n), |
|
_base64ToBigInt(jwk.e)); |
|
} |
|
|
|
function _base64ToBigInt(b64) { |
|
return new BigInteger(forge.util.bytesToHex(forge.util.decode64(b64)), 16); |
|
}
|
|
|